	Q	. P. Co	ode: 20	HS08	49											R	20	
	R	eg	No.				0	112.5	90 	Kana			- inde					
		······································		60	wi dana	r lanns	inim 2			haidh								
		;	SIDDH	IART	H INS	TITU	TE O	FEN	GINE	CERIN	NG &	TE	CHN	NOL	OGY::	PUTTU	R	
				V	10	4		(AU	TON	OMO	US)		<u> </u>		41	Manala 4	2000	
		В.	i ech i	rear	I Sem	iestei	r Reg	ular d	& Sup	opien	nenta	ary i	Exar	mina	itions	warch-4	2023	
					(Co	mmon	to CS	APPI SE CA	AD CO	C C	SICS	TIC	CIT	& C.	AD.			
	Ti	ime: 3	hours		(00)			, 01	12,00	, 0		,	CII ·			Max. N	Marks: (50
						()	newoi	all Fi		aite 5	v 12	- 60	Mar	rke)				
						(21	113 W C		U	NIT-I		- 00	, Ivia	rk3)				
1	al	Descri	ibe the	form	ation c	of Nev	vton's	ring	with 1	neces	sary t	heoi	ry w	ith r	elevant	CO 1	L2	9 M
	(diagra	m and	deriv	e the e	xpress	sions	for da	rk and	l brig	ht fri	nges				00.1		014
	b	In a N	lewtor		gs exp	erime	nt, th	e diai	neter	of th	e 5 th	ring	15 0	0.30	cm and	COI	L3	3M
	1	the di	amete	r of ti	ne 15 th	ring	1S U.6	2 cm.	. Calc	ulate	the d	11am	leter	of t	he 25 th			
		iiiig.								OR								
2	a]	Explai	n the t	heory	of Fra	unho	fer di	fracti	on du	e to s	ingle	slit.				CO 1	L2	8M
	b	Obtaiı	n cond	itions	for br	ight a	nd da	rk frii	nges i	n sing	gle sli	t dif	fract	tion	pattern	CO 1	L4	4M
	8	and di	aw int	ensity	distri	butior	1.		U						•			
									U	IT-II	đ							
3	a	What	are th	ne sal	ient fe	atures	s of c	lassic	al fre	e ele	ctron	the	eory?	De	rive an	CO 2	L3	8M
	(expres	sion fo	or elec	trical o	condu	ctivit	y in a	metal	?								
	b 1	Find	relaxat	ion t	ime of	cond	luctio	n ele	ectron	in r	netal	if i	its r	esist	ivity is	CO 2	L3	4M
		1.54x1	.0 ⁻⁸ Ω-r	n and	it has	5.8x1	.0 ²⁸ cc	nduci	tion e	lectro	n/m ³	•						
	(Given	m= 9.	1 x 10	⁻³¹ kg, e	e= 1.6	x10 ⁻¹⁹	C.		0.0								
4	- 1	M.		fice	as of J					OR						COR	τ1	014
4	a b 1	write Find t	a sign	nncan	ce or a	iverge	ence a	na cu	1 10/	a vect	or.	t +1	ant r	otot	o with	CO_2		8IVI AM
	6	energy 0.5eV is above Fermi energy								602	LO	41111						
		5116152	, 0.50	10 40	overe		1C1 6 J		IIN	ITT-II	F							
5	al	Descri	he the	CODS	tructio	n and	wor	king 1	orinci	nle o	n di 1	VAG	Las	er w	ith the	CO 3	12	9М
5	1	help o	f a nea	t diag	ram.	ii uiic		5 1	Jimei	pie o.			Luo		itii tiit	000		7111
	Ь	Calcul	ate the	e wav	elengtl	n of e	mittee	l radi	ation	from	n GaA	ls w	hich	has	a band	CO 3	L3	3M
	Ę	gap of	f 1.44e	V.	U													
										OR								
6	a V	What	is the	accep	tance a	angle	of an	optica	al fibe	er and	deri	ve a	n ex	press	sion for	CO 3	L3	8 M
	i	it.																
	b /	An op	tical f	ibre h	las a c	ore re	efracti	ve in	dex o	f 1.44	and 4	cla	ddin	g re	fractive	CO 3	L3	4 M
	i	index	of 1.4	0. Fin	d its n	umeri	ical aj	pertur	e, Ac	cepat	ance	angl	le, ci	ritica	l angle			
	5	and fra	actiona	al retr	active	Index	chan	ge.	1.2		7							
-			_			•			UN	11-11	E C	+ <i>Eu</i>				<u> </u>		015
/	av	What	is Ferr	ni lev	el? Pro	ve tha	at the	Ferm	i leve	E_F	= -	2	for	an ii	ntrinsic	CO 4	15	8M
	S	semico	onduct	or.														43 -
	bΙ	Draw	the en	ergy b	and st	ructur	e of i	ntrins	ic sen	nicon	ducto	or.				CO 4	Ĺ1	4 M

	(R	,				
				OR			
8	a	Descr	ibe the o	construction and working mechanism of LED.	CO 4	L2	8 M
	b	Deter	mine th	e wavelength of LED fabricated by the CdS material with band	CO 4	L3	4 M
		gap of	f 2.42 eV	UNIT-V			
9	а	Expla	in the T	vpe-I and Type-II superconductors.	CO 5	1.2	8M
-	b	What	CO 5	L1	4M		
10	а	What	are the	techniques available for synthesizing nanomaterials?	CO 5	L1	6M
10	b	Expla	in ball n	nilling technique for synthesis of nanomaterial.	CO 5	L2	6M
				*** END ***			
				icance of divergence and curl of a vector.			