\square

SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Regular \& Supplementary Examinations March-2023 APPLIED PHYSICS
(Common to CSE, CAD, CCC, CSM, CIC, CIT \& CAI)

Time: 3 hours
(Answer all Five Units $5 \times 12=60$ Marks)
UNIT-I
1 a Describe the formation of Newton's ring with necessary theory with relevant
diagram and derive the expressions for dark and bright fringes.
b In a Newton's rings experiment, the diameter of the $5^{\text {th }}$ ring is 0.30 cm and
the diameter of the $15^{\text {th }}$ ring is 0.62 cm . Calculate the diameter of the $25^{\text {th }}$
ring.
2 a Explain the theory of Fraunhofer diffraction due to single slit.
b Obtain conditions for bright and dark fringes in single slit diffraction pattern and draw intensity distribution.

UNIT-II

3 a What are the salient features of classical free electron theory? Derive an
expression for electrical conductivity in a metal?
b Find relaxation time of conduction electron in metal if its resistivity is
$1.54 \times 10^{-8} \Omega-\mathrm{m}$ and it has 5.8×10^{28} conduction electron $/ \mathrm{m}^{3}$.
Given $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$.
4 a Write a significance of divergence and curl of a vector.
b Find the temperature at which there is 11% probability that a state with energy 0.5 eV is above Fermi energy.

UNIT-III

5 a Describe the construction and working principle of NdYAG Laser with the help of a neat diagram.
b Calculate the wavelength of emitted radiation from GaAs which has a band gap of 1.44 eV .

OR
6 a What is the acceptance angle of an optical fiber and derive an expression for it.
b An optical fibre has a core refractive index of 1.44 and cladding refractive index of 1.40. Find its numerical aperture, Accepatance angle, critical angle and fractional refractive index change.

UNIT-IV

7 a What is Fermi level? Prove that the Fermi level $\boldsymbol{E}_{\boldsymbol{F}}=\frac{E_{C}+\boldsymbol{E}_{V}}{2}$ for an intrinsic \quad CO $4 \quad$ L5 \quad 8M semiconductor.
b Draw the energy band structure of intrinsic semiconductor.
CO 4 L1 4M

OR
8 a Describe the construction and working mechanism of LED. CO 4 L2 8 Mb Determine the wavelength of LED fabricated by the CdS material with band \quad CO $4 \quad \mathrm{~L} 3 \quad 4 \mathrm{M}$gap of 2.42 eV
UNIT-V
9 a Explain the Type-I and Type-II superconductors. CO 5 L2 8 M
b What is Meissner effect? CO 5 L1 4M
OR
CO 5 L1 6M
10 a What are the techniques available for synthesizing nanomaterials? CO 5 L2 6M

CO 5 L2 6M

